

Ironclad: A formally verified OS
kernel written in Ada

<streaksu@ironclad-os.org>
Mon, Apr 14

The context

● In the beginning: C based
OSes, like Windows or
Linux.

● Issues with scalability and
widepread safety and
security.

● Insuitability to safety critical
operations and work.

The context

● Lots of potential answers.

● Formal verification is
underexplored and confined
to only embedded OSes
and hypervisors.

● Very few FOSS options.

Enter Ironclad

● Introduction to formal
verification.

● What is SPARK and how
we use it for Ironclad.

● What we do that other
systems don’t.

What is Ironclad?

● POSIX-compatible partially
formally-verified kernel.

● Hard real-time and GP
capable.

● ~100% Ada / SPARK code.
● Free as in freedom.

The most common question: why not Rust?

● Weak specifications for now
(Ferrocene doesn’t really
help).

● Very lacking formal
verification tooling.

History

Ironclad is only a kernel

Where Ironclad is today

● Pretty small developer team.

● Gloire being the biggest and only FOSS distribution, and a
growing community.

● Hardware support growing.

● Upstreamed support for several pieces of software.

What makes Ironclad special

Formal verification is a foundation

Mandatory Access Control
(MAC) Scheduling guarantees

Formal verification

What is formal verification, anyways?

What is formal verification, anyways?

What is formal verification, anyways?

What is formal verification, anyways?

Checking the correctness of an input with
respect to a formal specification (using math).

What is formal verification, anyways?

Why don’t we do it all the time?

Why don’t we do it all the time?

Why don’t we do it all the time?

You need programming language subsets!

Why don’t we do it all the time?

● Extremely expensive to do in terms of labour and compute
as the formal core (the part is formally checked) grows.

real 21m10.377s

user 34m27.164s

sys 0m40.292s

Enter SPARK

● Subset of Ada with a long
list of successes on
aerospace, transportation,
MIC...

● GNATProve as biggest
public, fully FOSS checker.

SPARK’s requirements

● Much stricter scope for side
effects.

● Much more restrictive
access types (pointers).

● No backward GOTOs.
● No exception handling.
● No controlled types

(handicaps a bit the type
system).

SPARK’s requirements

● Much more restrictive
access types (pointers) and
a primitive borrow checker
means Ada becomes more
like Rust

type Gen_Int_Acc is access all Integer;

V : aliased Integer := 15;

-- This is a Move
X3 : Gen_Int_Acc := V'Access;

-- This is a Move
X4 : Gen_Int_Acc := X3;

-- This is an Allocation. GNATprove will flag
-- this as a leak because implicit deallocation
-- is not possible
X3 : Gen_Int_Acc := new Integer'(15);

Quick tangent: Ada’s source hierarchy

● Ada uses headers, like
C/C++.

● Headers (.h) are called
specifications (.ads), source
files (.c) are called
bodies/implementation
(.adb).

-- lib-messages.ads.
package Lib.Messages is

procedure Print;
end Lib.Messages;

-- lib-messages.adb.
package body Lib.Messages is

procedure Print is
begin

Put_Line ("Hello!");
end Print;

end Lib.Messages;

SPARK helps but it doesn’t do everything

-- Signature in package specification.

-- Set the user id associated with a process.

procedure Set_UID (Proc : PID; UID : Unsigned_32)

with Global => (In_Out => (Proc_Lock, Proc_Registry),
 Pre => Is_Valid (Proc) and UID >= 1000,
 Post => Get_UID (Proc) = UID;

-- Implementation in package body.

procedure Set_UID (Proc : PID; UID : Unsigned_32) is

begin

 Registry (Proc).User := UID;

end Set_UID;

SPARK helps but it doesn’t do everything

for I in Devices_Data'Range loop
pragma Loop_Invariant (Total <= Devices_Data'Length);

if Devices_Data (I).Is_Present then
Total := Total + 1;
if Curr_Index < Buffer'Length then

Buffer (Buffer'First + Curr_Index) := I;
Curr_Index := Curr_Index + 1;

end if;
end if;

end loop;

SPARK helps but it doesn’t do everything

package Arch.Clocks with
Abstract_State => (Monotonic_Clock_State, RT_Clock_State)

is
procedure Initialize_Sources

with Global => (Output => (Monotonic_Clock_State, RT_Clock_State));
end Arch.Clocks;

package body Arch.Clocks with
Refined_State =>

(RT_Clock_State => (Is_Initialized, RT_Timestamp_Seconds,
 RT_Timestamp_Nanoseconds, RT_Stored_Seconds,
 RT_Stored_Nanoseconds),

 Monotonic_Clock_State => (TSC_Tick_Resolution))
is

SPARK helps but it doesn’t do everything

procedure Read
 (Key : FS_Handle;
 Ino : File_Inode_Number;
 Offset : Unsigned_64;
 Data : out Operation_Data;
 Ret_Count : out Natural;
 Is_Blocking : Boolean;
 Success : out FS_Status)
is
 pragma Annotate
 (GNATprove, False_Positive, "precondition might fail",
 Reason => "No it does not");
...

SPARK is still pretty neat

SeL4, biggest formally
verified operating system
kernel

L4v: 61352 lines of code
split among a lot of different
languages, the main ones
being C, Haskell, Ocaml...

Ironclad

Specifications and
checking baked in the
code.

Want to check? Run
make check

:)

The challenge of formal verification

“The seL4 team reports 20 person years for 10 000 source lines of
C code”.

Don’t Sweat the Small Stuff: formal
verification of C code without the pain
 - NICTA and UNSW, Sydney, Australia

The challenge of formal verification

● Scheduling code
● Inter-process and inter-

thread communication.

● Scheduling code
● Inter-process and inter-

thread communication.
● Cryptographic interfaces.
● POSIX interfaces.
● More complex IPC

interfaces.
● Kernel level device drivers.
● Filesystem and VFS.
● Networking.

So we have to pick our battles

Thankfully sometimes you can say no...

package Example with SPARK_Mode => Off

Thankfully Ada helps

SPARK levels

● Bronze level
● Correct

initialization and
correct data flow.

● Silver level
● Abscence of

runtime errors
(AoRTE).

● Gold level
● Proof of integrity

and correctness
according to
specs.

● Huge swathes of
the kernel.

● IPC code,
process
management.

● Cryptographic
and Mandatory
Access Control
(MAC) code.

SPARK levels

Follow the progress, check the source code, or
download distributions at

<https://ironclad-os.org>

Thanks to

Thanks to

● Mintsuki <https://github.com/mintsuki>
● Lucretia <https://github.com/lucretia>
● Ineiev <https://savannah.gnu.org/users/ineiev>
● Irvise <https://github.com/Irvise>
● The Managarm Project <https://github.com/managarm>

https://github.com/mintsuki
https://github.com/lucretia
https://savannah.gnu.org/users/ineiev
https://github.com/Irvise
https://github.com/managarm

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

