Ironclad: A formally verified OS kernel written in Ada

<streaksu@ironclad-os.org> Mon, Apr 14

The context

- In the beginning: C based OSes, like Windows or Linux.
- Issues with scalability and widepread safety and security.
- Insuitability to safety critical operations and work.

The context

• Lots of potential answers.

- Formal verification is underexplored and confined to only embedded OSes and hypervisors.
- Very few FOSS options.

Enter Ironclad

- Introduction to formal verification.
- What is SPARK and how we use it for Ironclad.
- What we do that other systems don't.

What is Ironclad?

- POSIX-compatible partially formally-verified kernel.
- Hard real-time and GP capable.
- ~100% Ada / SPARK code.
- Free as in freedom.

The most common question: why not Rust?

• Weak specifications for now (Ferrocene doesn't really help).

• Very lacking formal verification tooling.

Ironclad is only a kernel

Where Ironclad is today

• Pretty small developer team.

• Gloire being the biggest and only FOSS distribution, and a growing community.

• Hardware support growing.

Upstreamed support for several pieces of software.

What makes Ironclad special

Formal verification is a foundation

Formal verification

Success or failure

C program

C Compiler's lexer + parser (frontend)

C Specification

idet/ops/nms/src/nms_cpu.cpp: In lambda function: det/ops/nms/src/nms_cpu.cpp:206:46: error: invalid initialization of ref: ::Type& from expression of type 'cl0::ScalarType' AT_DISPATCH_FLOATING_TYPES(dets.scalar_type(), "soft_nms", [&] {

nome/nhuthuynh/miniconda2/lib/python3.7/site-packages/torch/lib/include/A te: in definition of macro 'AT_DISPATCH_FLOATING_TYPES' const at:Type& the_type = TYPE;

/home/nhuthuynh/miniconda2/lib/python3.7/site-packages/torch/lib/include/A note: in definition of macro 'AT_DISPATCH_FLOATING_TYPE5' const at::Type6 the_type = TYPE;

error: command 'gcc' failed with exit status :

Success or

Boolean value

if (Input == True) return Success; else return Failure;

Success or Failure

Only true gets past

Checking the correctness of an input with respect to a formal specification (using math).

Variable moving semantics Side-effect tracking ar

Corroutines and threading Memory management and GC

Exception handling logic

Cone of influence (COI) the formal verifier has to work with

Simplified Memory

Variable semantics Simplified Side-effects

Cone of influence (COI) the formal verifier has to work with

You need programming language subsets!

• Extremely expensive to do in terms of labour and compute as the formal core (the part is formally checked) grows.

real 21m10.377s user 34m27.164s sys 0m40.292s

Enter SPARK

 Subset of Ada with a long list of successes on aerospace, transportation, MIC...

• GNATProve as biggest public, fully FOSS checker.

SPARK's requirements

- Much stricter scope for side effects.
- Much more restrictive access types (pointers).
- No backward GOTOs.
- No exception handling.
- No controlled types (handicaps a bit the type system).

SPARK's requirements

 Much more restrictive access types (pointers) and a primitive borrow checker means Ada becomes more like Rust

type Gen_Int_Acc is access all Integer; V : aliased Integer := 15; -- This is a Move X3 : Gen_Int_Acc := V'Access; -- This is a Move X4 : Gen_Int_Acc := X3; This is an Allocation. GNATprove will flag this as a leak because implicit deallocation is not possible X3 : Gen_Int_Acc := new Integer'(15);

Quick tangent: Ada's source hierarchy

- Ada uses headers, like C/C++.
- Headers (.h) are called specifications (.ads), source files (.c) are called bodies/implementation (.adb).

```
-- lib-messages.ads.
package Lib.Messages is
    procedure Print;
end Lib.Messages;
```

```
-- lib-messages.adb.
package body Lib.Messages is
    procedure Print is
    begin
        Put_Line ("Hello!");
    end Print;
end Lib.Messages;
```

- -- Signature in package specification.
- -- Set the user id associated with a process.

```
procedure Set_UID (Proc : PID; UID : Unsigned_32)
```

with Global => (In Out => (Proc Lock, Proc Registry),
Pre => Is Valid (Proc) and UID >= 1000,
Post => Get_UID (Proc) = UID;

```
-- Implementation in package body.
procedure Set_UID (Proc : PID; UID : Unsigned_32) is
begin
Registry (Proc).User := UID;
end Set_UID;
```


SPARK is still pretty neat

SeL4, biggest formally verified operating system kernel

L4v: 61352 lines of code split among a lot of different languages, the main ones being C, Haskell, Ocaml...

Ironclad

Specifications and checking baked in the code.

Want to check? Run make check

The challenge of formal verification

"The seL4 team reports 20 person years for 10 000 source lines of C code".

Don't Sweat the Small Stuff: formal verification of C code without the pain

- NICTA and UNSW, Sydney, Australia

216 text files. 213 unique files. 3 files ignored.					
github.com/AlDanial/cloc	v 2.04 T	=0.05	s (4141.1	files/s, 887235.3	lines/s)
Language	files			comment	code
Ada	207				
Assembly	4		34	73	239
Linker Script	2		18	34	84
SUM:	213		4221	5518	35897

The challenge of formal verification

- Scheduling code
- Inter-process and interthread communication.

- Scheduling code
- Inter-process and interthread communication.
- Cryptographic interfaces.
- POSIX interfaces.
- More complex IPC interfaces.
- Kernel level device drivers.
- Filesystem and VFS.
- Networking.

So we have to pick our battles

Thankfully sometimes you can say no...

package Example with SPARK Mode => Off

Thankfully Ada helps

SPARK levels

Bronze level •

initialization and

correct data flow.

Correct

Silver level

Abscence of \bullet runtime errors (AoRTE).

- Gold level
- Proof of integrity and correctness according to specs.

 Huge swathes of IPC code, the kernel. process

management.

 Cryptographic and Mandatory **Access Control** (MAC) code.

SPARK levels

Follow the progress, check the source code, or download distributions at

<https://ironclad-os.org>

Thanks to

Thanks to

- Mintsuki <https://github.com/mintsuki>
- Lucretia <https://github.com/lucretia>
- Ineiev <https://savannah.gnu.org/users/ineiev>
- Irvise <https://github.com/Irvise>
- The Managarm Project <https://github.com/managarm>